Two-Dimensional Tomography from Noisy Projections Taken at Unknown Random Directions

نویسندگان

  • Amit Singer
  • H.-T. Wu
چکیده

Computerized tomography is a standard method for obtaining internal structure of objects from their projection images. While CT reconstruction requires the knowledge of the imaging directions, there are some situations in which the imaging directions are unknown, for example, when imaging a moving object. It is therefore desirable to design a reconstruction method from projection images taken at unknown directions. Another difficulty arises from the fact that the projections are often contaminated by noise, practically limiting all current methods, including the recently proposed diffusion map approach. In this paper, we introduce two denoising steps that allow reconstructions at much lower signal-to-noise ratios (SNRs) when combined with the diffusion map framework. In the first denoising step we use principal component analysis (PCA) together with classical Wiener filtering to derive an asymptotically optimal linear filter. In the second step, we denoise the graph of similarities between the filtered projections using a network analysis measure such as the Jaccard index. Using this combination of PCA, Wiener filtering, graph denoising, and diffusion maps, we are able to reconstruct the two-dimensional (2-D) Shepp-Logan phantom from simulative noisy projections at SNRs well below their currently reported threshold values. We also report the results of a numerical experiment corresponding to an abdominal CT. Although the focus of this paper is the 2-D CT reconstruction problem, we believe that the combination of PCA, Wiener filtering, graph denoising, and diffusion maps is potentially useful in other signal processing and image analysis applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-d Tomography from Noisy Projections Taken at Unknown Random Directions

Computerized Tomography (CT) is a standard method for obtaining internal structure of objects from their projection images. While CT reconstruction requires the knowledge of the imaging directions, there are some situations in which the imaging directions are unknown, for example, when imaging a moving object. It is therefore desirable to design a reconstruction method from projection images ta...

متن کامل

Three-Dimensional Structure Determination from Common Lines in Cryo-EM by Eigenvectors and Semidefinite Programming

The cryo-electron microscopy reconstruction problem is to find the three-dimensional (3D) structure of a macromolecule given noisy samples of its two-dimensional projection images at unknown random directions. Present algorithms for finding an initial 3D structure model are based on the "angular reconstitution" method in which a coordinate system is established from three projections, and the o...

متن کامل

Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem

In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule und...

متن کامل

On Random Tomography with Unobservable Projection Angles1 by Victor M. Panaretos

We formulate and investigate a statistical inverse problem of a random tomographic nature, where a probability density function on R3 is to be recovered from observation of finitely many of its two-dimensional projections in random and unobservable directions. Such a problem is distinct from the classic problem of tomography where both the projections and the unit vectors normal to the projecti...

متن کامل

On the Stability of Reconstructing Lattice Sets from X-rays Along Two Directions

We consider the stability problem of reconstructing lattice sets from their noisy X-rays (i.e. line sums) taken along two directions. Stability is of major importance in discrete tomography because, in practice, these X-rays are affected by errors due to the nature of measurements. It has been shown that the reconstruction from noisy X-rays taken along more than two directions can lead to drama...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM journal on imaging sciences

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2013